Let's Review...

\square Uniform motion is...
\square Non-uniform motion occurs when...

Describing Motion

The motion of an object is often described using words, equations, diagrams, and graphs.

Fast, slow, speeding up, slowing down...

Describing Motion

The math quantities that are used to describe motion can be divided into two categories: scalar and vector.

Scalars are quantities that are fully described by a magnitude (or number) alone.
\square Vectors are quantities that are fully described by both a magnitude and a direction.

Let's Review...

\square Uniform motion is... motion at a constant speed in a straight line.
\square Non-uniform motion occurs when... there is a change in speed AND / OR direction.

Describing Motion

\square Words and phrases such as going fast, stopped, slowing down, speeding up, and turning are a good start...
\square But in physics, we need to also use words like distance, displacement, speed, velocity, and acceleration. Each of these has a math quantity associated with it.

Scalars \& Vectors

Scalars

\square measurement has size but no direction
E.g. $15 \mathrm{~m}, 30 \mathrm{~s}$

Vectors
\square measurement involves both size and direction
E.g. 10 km N , $1 \mathrm{~m} / \mathrm{s}$ W

Check your understanding...

\square Which measurements are scalar? Which are vector?
a) 15 hm NE
b) 12 s
c) $19 \mathrm{~m} / \mathrm{s} \mathrm{S}$
d) 1.8 cm

Check your understanding...

\square Which measurements are scalar? Which are vector?
a) 15 hm NE
Vector
b) 12 s
c) $19 \mathrm{~m} / \mathrm{s} \mathrm{S}$
d) 1.8 cm

Check your understanding...

\square Which measurements are scalar? Which are vector?
a) 15 hm NE
Vector
b) 12 s
Scalar
c) $19 \mathrm{~m} / \mathrm{s} \mathrm{S}$
Vector
d) 1.8 cm

Check your understanding...

\square Which measurements are scalar? Which are vector?
a) 15 hm NE
Vector
b) 12 s
Scalar
c) $19 \mathrm{~m} / \mathrm{s} \mathrm{S}$
Vector
d) 1.8 cm
Scalar

Distance \& Displacement

```
Distance, d
    refers to "how
    much ground an
    object has
    covered"
    scalar
```

 Note: the arrow over the letter ' \(d\) ' means "vector"

Check your understanding...

\square A physics teacher walks 4 meters East, 2 meters South, 4 meters West, and finally 2 meters North. E

What distance has she traveled? \qquad
What was her displacement? \qquad
\qquad

Check your understanding...

A physics teacher walks 4 meters East, 2 meters South, 4 meters West, and finally 2 meters North.

E

What distance has she traveled? 12 m
What was her displacement? \qquad

Distance \& Displacement

Check your understanding...

A physics teacher walks 4 meters East, 2 meters South, 4 meters West, and finally 2 meters North. E

1. What distance has she traveled? 12 m
2. What was her displacement? $\underline{0 \mathrm{~m}}$

Time \& Time Interval

Time	Time Interval
\squaredescribes when an event occurs	\square describes the duration of an event
\square scalar	\square scalar

Time Interval

\square General calculation is:

$$
\Delta t=t_{f}-t_{i}
$$

where:

- the symbol Δ means "change in"
- f stands for final
- i stands for initial

Speed \& Velocity	
Speed, v Velocity, \vec{v} refers to "how fast an object is moving"	\square refers to "the rate at which an object changes its position"
\square scalar	\square vector

Velocity

\square is speed with a direction!

Speed is $55 \mathrm{~km} / \mathrm{hr}$ while velocity is 55 km/hr E.
\square Speed is a scalar quantity and does not keep track of direction; velocity is a vector quantity and is direction aware.

Speed

\square is the rate at which an object covers distance.

A fast speed means a large distance is covered in a short amount of time.

An object with no movement at all has a zero speed.

Average Vs Instantaneous Speed

Instantaneous Speed, $v_{\text {inst }}$	Average Speed, $v_{\text {ave }}$
\square the speed at any	\square the average of all
given instant in	instantaneous
time	speeds

Acceleration, \vec{a}

the rate at which an object changes its velocity (vector)

An object is accelerating if it is changing its velocity (speeding up or slowing down and/or changing direction).

Any Questions?

