Representing Motion Another common way of representing motion is using diagrams and graphs. Positive Velocity Changing Velocity (acceleration) ## Ticker Tape Diagrams A tape is attached to an object and threaded through a device that places a tick at regular intervals of time. As the object moves, it drags the tape through the "ticker," thus leaving a trail of dots. - The distance between dots represents the object's position change during that time interval. A large distance between dots indicates that the object was moving fast while a small distance means the object was moving slow. - A changing distance between dots indicates a changing velocity and thus an acceleration. A constant distance between dots represents a constant velocity and therefore uniform motion. Positive Slope Slants up to the right. Indicates an object travelling in the positive direction (ie: North, East, to the right, up, etc.) Position vs. Time (April 100 90 770 60 770 Calculating the Slope of a P-T Graph The slope of a graph is represented by: $slope = \frac{rise}{run} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$ ## Slope on a P-T Graph \square On a position-time graph the slope is the change in position ($\Delta \vec{\mathbf{d}}$) divided by the change in time (Δt). We know this as speed! $$slope = \frac{\Delta \mathbf{d}}{\Delta t} = speed$$ | | Any Questions? | |----|----------------| | 14 |