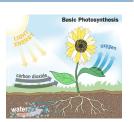


Ecosystems

□ An ecosystem refers to the sum of abiotic (nonliving) and biotic (living) factors in a given area.

Ecosystems

- Abiotic factors include: air, water, soil, nutrients and light.
- <u>Biotic</u> factors include: plants, animals and micro-organisms.



Ecosystems

- □ An ecosystem is a <u>self-supporting</u> unit. There are 4 processes that continually take place.
 - 1. Energy Production
 - 2. Energy Transfers
 - 3. Decomposition
 - 4. Recycling

1. Energy Production

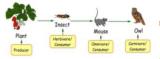
- □ The "fuel" for ecosystems is energy from the <u>sun</u>.
- Sunlight is captured by green plants during photosynthesis.

Photosynthesis

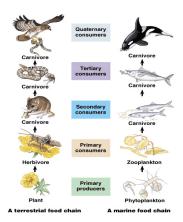
- □ In order to photosynthesize, plants need <u>water</u> and <u>carbon dioxide</u>.
 - Water enters a plant via its roots while carbon dioxide enters via tiny holes in the underside of leaves.

- □ Photosynthesis produces: glucose and oxygen.
 - Glucose is needed by the plant for energy.
 - Plants change glucose into starch, fats, and proteins.
 These nutrients are then stored in the plant and available for consumers.

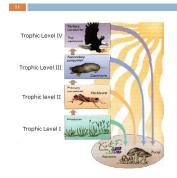
2. Energy Transfers


- Energy from plants is then transferred to the herbivores (plant-eating animals) and omnivores (plant and animal-eating animals) that eat them.
- The energy is transferred again to the <u>carnivores</u> (animals that eat other animals).

2. Energy Transfers


- □ Energy transfers can be shown through the use of:
 - <u>Food chains</u>: show the flow of energy in an ecosystem.
 - Food webs: represent interconnected food chains.
 - Energy pyramids: show the changes in available energy from one trophic level to another.

Food Chains


The Food Chain Of An Owl

- Because green plants convert the sun's energy into chemical energy, they are called <u>producers</u>.
- Animals that eat producers are primary consumers.
- Animals that eat primary consumers are <u>secondary</u> <u>consumers</u>, and so on.

Food Chains

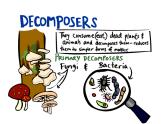
- We need to think of ecosystems as being made up of several feeding levels, called trophic levels.
- Producers make up the first trophic level, primary consumers the second, secondary consumers the third, and so on.

Food Webs

- Most organisms are part of many food chains.
- Arrows in a food web represent the <u>flow</u> of <u>energy</u> and nutrients.
- Following the arrows leads to the top consumers.

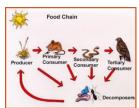
Energy Pyramids

- Most of the energy that enters each trophic level is used by the organism just to stay <u>alive</u> and a small amount is passed as <u>waste</u>.
- This leaves only a very small percentage (~10%) to be stored as body tissues and it is this energy that gets passed on to the next trophic level.
- An energy pyramid is a way to show how energy moves through a food chain.

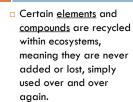

Energy Pyramids

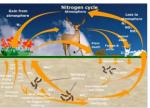
- The <u>trophic</u> level of an organism identifies its <u>position</u> in the pyramid.
- The producers are on the bottom with the most energy.
- As you move <u>up</u> you will find <u>less</u> energy. Having less energy available means there will be a smaller number of organisms and a smaller overall biomass (total mass of all living things in a given area.

3. Decomposition



■ When biotic things die, their bodies get consumed by <u>scavengers</u> (ravens, ants) and <u>detritivores</u> (earthworms, beetles, crabs) and are <u>decomposed</u> (broken down) by microorganisms, fungi, and animals.


3. Decomposition



- Because decomposers can consume any living thing, they are said to occur at <u>any and all</u> <u>trophic levels</u>.
- The chemicals from biotic things are <u>returned</u> to the soil and used again by plants.

4. Recycling

