POPULATION ECOLOGY

Population Characteristics

- There are three characteristics that all populations have:
- 1) population density,
- 2) spatial distribution,
- 3) and growth rate.

1. Population Density

• Refers to the number of individuals in relation to the space

Population Density = # of individuals / unit area

1. Population Density

Example: What is the density of a rabbit population of 200 living in a 5 km² range?

Solution:

Population Density = # of individuals / unit area

1. Population Density

Example: What is the density of a rabbit population of 200 living in a 5 km² range?

Solution:

Population Density = # of individuals / unit area Population Density = 200 rabbits / 5 km²

1. Population Density

Example: What is the density of a rabbit population of 200 living in a 5 km² range?

Solution:

Population Density = # of individuals / unit area Population Density = 200 rabbits / 5 km² Population Density = 40 rabbits / km²

Density – Dependent Factors

- Population health is often affected by its density.
- Factors that affect a population because of its density are called <u>density</u>dependent factors.
- E.g. Food supply, competition for mates, spread of disease. (usually biotic factors)

Density - Independent Factors

- Factors that affect a population regardless of its density are called <u>density-independent factors.</u>
- E.g. Forest fires, Flood, Habitat destruction, Pollution (usually <u>abiotic</u> factors)

2. Spatial Distribution

- Refers to the pattern of <u>spacing</u> of a population within an area
- 3 types:

2. Spatial Distribution

- Results from dispersion the <u>spreading</u> of organisms from one area to another
- Most often due to the <u>resource availability</u> (which may be limited to due to mountains, oceans, canopy level, or even behavior!)

3. Growth Rate

- Refers to how fast a population grows
- 4 factors determine how a population changes:
- 1. Natality (birth rate)
- 2. Mortality (death rate)
- 3. <u>Immigration</u> (individuals moving into a population)
- 4. <u>Emigration</u> (individuals moving out of a population)

3. Growth Rate

• Population change can be calculated as:

Population Change = Births – deaths + immigration - emigration

3. Growth Rate

Example: Calculate the population change in a wolf pack where the wolves experience the birth of 3 pups, the death of a lone wolf, and 1 wolf leaving the pack. No animals moved into the pack.

Solution: Population Change

= Births - deaths + immigration - emigration

3. Growth Rate

Example: Calculate the population change in a wolf pack where the wolves experience the birth of 3 pups, the death of a lone wolf, and 1 wolf leaving the pack. No animals moved into the pack.

Solution: Population Change

= Births - deaths + immigration - emigration

= 3 - 1 + 0 - 1

3. Growth Rate

Example: Calculate the population change in a wolf pack where the wolves experience the birth of 3 pups, the death of a lone wolf, and 1 wolf leaving the pack. No animals moved into the pack.

Solution: Population Change

= Births – deaths + immigration – emigration

= 3 - 1 + 0 - 1

= 1 wolf

How do know how many organisms make up a population?

Yes, we count them!

But what about...?

Population Estimation

- When the number of organisms in a population is hard to count, scientists <u>estimate</u> the total population size
- They do this by first sampling the population and then calculating a population size based on the data
- There are 2 main methods: Mark-Recapture and Random Sampling

1. Mark-Recapture Sampling

- · Also called 'tagging'
- A sample of organisms is captured and <u>marked</u> and then returned unharmed to their environment

 Over time, the organisms are <u>recaptured</u> and data is collected on how many are captured with marks

1. Mark-Recapture Sampling

 $N = m \times s$

Where:

N = estimated population total

m = # of individuals marked from 1st capture

s = total # of individuals captured

t = # counted that were marked during recapture

1. Mark-Recapture Sampling

Example: In order to estimate the population of sturgeon fish in the river, biologists marked 10 sturgeon and released them back into the river. The next year, 15 sturgeon were trapped and 3 were found to have marks. Estimate the total population.

Solution: $N = m \times s$

1. Mark-Recapture Sampling

Example: In order to estimate the population of sturgeon fish in the river, biologists marked 10 sturgeon and released them back into the river. The next year, 15 sturgeon were trapped and 3 were found to have marks. Estimate the total population.

Solution:
$$N = m \times s$$
 $N = 10 \times 15$

1. Mark-Recapture Sampling

Example: In order to estimate the population of sturgeon fish in the river, biologists marked 10 sturgeon and released them back into the river. The next year, 15 sturgeon were trapped and 3 were found to have marks. Estimate the total population.

Solution:
$$N = m \times s$$
 $N = 10 \times 15$ $N = 50$ fish t 3

1. Mark-Recapture Sampling

 Best for <u>mobile</u> populations, such as fish and birds

 Problems occur when no marked organisms are captured

2. Random Sampling

- Also called 'quadrat' sampling
- The number of organisms within a <u>small</u> area is counted.
- A sampling <u>frame</u> (quadrat, usually 1m²) is used to count the individuals in a mathematical area

2. Random Sampling

- The plots are often placed randomly throughout the sampling area (or if a grid system is used, then plots are chosen at random).
- Population size and density are then estimated based on the plot representation.

2. Random Sampling

1. Find the average # of individuals in the areas you sampled.

Average = <u>Total # of Individuals</u> # of Sample Plots

2. Random Sampling

1. Find the average # of individuals in the areas you sampled.

Average = Total # of Individuals # of Sample Plots

2. Multiply the average by the # of plots to find the population estimate.

Estimate = Average x # of Plots Total

2. Random Sampling (Quadrat)

<u>Example:</u> Random sampling was used to count the number of silver maple trees in the forest. The number of trees counted in the grid is shown below.

5			3
	4	4	
		1	

2. Random Sampling (Quadrat)

<u>Solution:</u> 1. Find the average # of individuals in the areas you sampled.

Average = <u>Total # of Individuals</u> # of Sample Plots

2. Random Sampling (Quadrat)

<u>Solution:</u> 1. Find the average # of individuals in the areas you sampled.

Average = Total # of Individuals # of Sample Plots = 5+4+4+3+1 5

2. Random Sampling (Quadrat)

Solution: 1. Find the average # of individuals in the areas you sampled.

Average = Total # of Individuals # of Sample Plots = 5+4+4+3+1 5 = 3.4 trees / plot

2. Random Sampling (Quadrat)

<u>Solution</u>: 2.Multiply the average by the # of plots to find the population estimate.

Population Estimate = Average x # of Plots Total

2. Random Sampling (Quadrat)

<u>Solution</u>: 2.Multiply the average by the # of plots to find the population estimate.

Population Estimate = Average x # of Plots Total = 3.4 trees/plot x 16 plots/area

2. Random Sampling (Quadrat)

<u>Solution</u>: 2.Multiply the average by the # of plots to find the population estimate.

Population Estimate = Average x # of Plots Total = 3.4 trees/plot x 16 plots/area = 54.4 trees / area

2. Random Sampling (Quadrat)

 Best for <u>large</u> stationary populations, such as trees or coral

 Problems occur when random sampling is not followed

Any Questions?

