Naming Compounds

A simple binary ionic compound comprises of a metallic cation and nonmetallic anion. A metallic cation has lost an electrons) while a has gained an electrons) to ensure electron
stability similar to the noble gases.
A covalent bond forms when 2 or more non metallic atoms combine. A covalent bond results when electrons are being \qquad to ensure electron stability similar to the noble gases.

Rules for Naming Ionic Compounds:

1) The first element is named using the full name of the metal followed by a shortened name of the nonmetal with -ide ending.
2) The shortened name of the nonmetal is usually the first syllable of the name of the nonmetal.
Examples:

Chemical Formula	Metal name	Nonmetal Name	Shortened Nonmetal name	Compound Name
NaCl	Sodium	Chlorine	Chlor-	Sodium chloride
MgO	Magnesium	Oxygen	Ox-	Magnesium oxide
CaCl_{2}	Calcium	Chlorine	Chlor-	Calcium chloride

3) polyvalent ions have 2 or more cations
eg. $\mathrm{FeCl}_{2} \rightarrow$ iron II chloride or $\mathrm{FeCl}_{3} \rightarrow$ iron III chloride use Roman numerals
4) ionic compounds using polyatomic ions \rightarrow use the name of cation first followed by the name of anion
eg. $\mathrm{Ca}(\mathrm{OH})_{2}$
-- calcium hydroxide
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
-- ammonium sulfate

* [polyatomic ions are groups of atoms covalently bonded to each other but possess an overall valence charge making them ions]

Rules for Naming Covalent Compounds:

1. The names for molecular compounds will vary depending upon the particular molecule.
1) water $\rightarrow \mathrm{H}_{2} \mathrm{O} \quad$ ammonia $\rightarrow \mathrm{NH}_{3}$ use their common names and do not use the IUPAC name normally assigned to them.
2) molecules beginning with \qquad are written as ionic compounds eg. $\mathrm{H}_{2} \mathrm{~S} \rightarrow$ hydrogen sulfide
$\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow$ hydrogen peroxide
3) molecules that are considered own naming system.
eg. $\mathrm{CH}_{4} \rightarrow$ methane $\quad \mathrm{C}_{2} \mathrm{H}_{6} \rightarrow$ ethane
4) However, the majority of covalent molecules use a \qquad system to illustrate the ratio between the combining of the nonmetallic atoms. The prefix is placed in front of the word indicating the subscript associate with the element
\rightarrow The combining capacity of a nonmetal is a measure of the number of covalent bonds that it will need to form a stable molecule.
5) The first nonmetal maintains its name (like metals) while the second nonmetal's name is shortened and the suffix "ide"' is added. The prefix is added when needed. It can be added to either element.
6) The prefixes are as followed:

Prefix	Number
mon (o)-	1
Di-	2
Sri-	3
Tetra-	4
Pent(a)-	5
Hex(a)-	6
Hept(a)-	7
Oct (a)-	8

Examples:

Chemical Formula	First Nonmetal Name	Second Nonmetal Name	Shortened nonmetal name (first syllable)	Chemical Name
CO_{2}	Carbon	Oxygen	ox-	Carbon dioxide
$\mathrm{N}_{2} \mathrm{O}_{4}$	Nitrogen	Oxygen	Ox-	Dinitrogen tetroxide
SF_{6}	Sulfur	Fluorine	fluor-	Sulfur hexafluoride

