

Scientific Method

- Science follows a series of specific steps in order gain information about the natural world.
- This process is referred to as the <u>scientific</u> method.

Practice: Writing a Hypothesis Statement
Directions: Write a hypothesis for each of the following problems.
1. How does temperature affect the amount a person sweats?
2. How do Band-Aids affect the time it takes for a cut to heal?

4. Conduct an Experiment

- <u>Procedure</u> used to test the hypothesis
- In science, anything that can change is called a <u>variable</u>.
- Only **ONE** variable can be tested per experiment; everything else must remain constant.

Independent Variable

• The variable that is being tested is called the independent variable.

• Example: The independent variable is the amount of fertilizer.

Dependent Variable

 The variable that changes in response to the independent variable is called the dependent variable.

• Example: The dependent variable is the plant height.

Constants

• All other variables in an experiment must remain the same and are called <u>constants</u>.

 Example: The constants include the amount of water and sunshine.

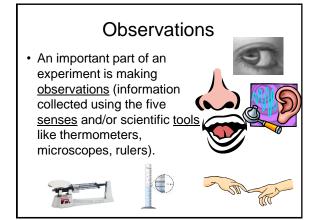
Experimental vs Control Group

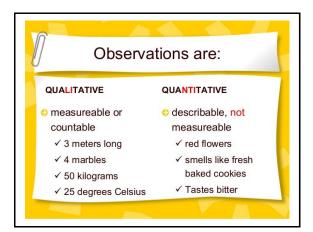
In each experiment, there is:

- 1. The <u>experiment group</u>, which includes all parts of the experiment.
- 2. The <u>control group</u>, which undergoes all parts of the experiment but does <u>not</u> receive the independent variable.
 - Used for <u>comparison</u> for results from the experimental group

Experimental vs Control Group

 Example: The experimental group includes all plants that receive fertilizer. The control group is the plant without fertilizer.

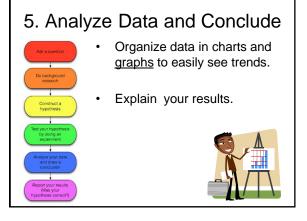

Practice:


 Rob wants to know how temperature affects the amount a person sweats. He places Group A in a room that is 100° F and Group B in a room that is 70° F. Rob measures the amount of sweat produced by each group.

Independent: Dependent: Experimental Group: Control Group:

Colin wants to know how band aids affect the amount of time it takes for a cut to heal. Group A does not apply a band aid to their cut. Group B places band aids on their cuts. Colin checks the cuts daily and records how long it takes for the cuts to heal.

Independent: Dependent: Experimental Group: Control Group:



Inferences

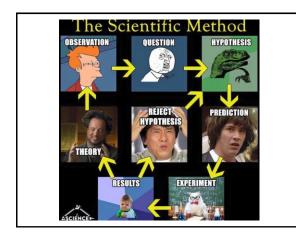
- Inferences are <u>conclusions</u> or deductions based on observations.
- In science, it is important that we make <u>observations</u> rather than inferences during an experiment.
- Inferences come later, when data is analyzed.

Statement	Observation	Inference
Object A is round and orange.	Х	
Object A is a basketball.		х
Object B is round and white.	х	
Object B is smaller than Object A.	х	
Object B is smooth.	x	
Object B is a table-tennis ball.		х

• The plants grown with fertilizer grow taller than plants grown without fertilizer.

Example: Plant growth using different fertilizer concentration Plant growth using different fertilizer concentration Plant growth using different fertilizer concentration A 275 B 605 C 1505 D 1275 E 1505

 Moreover, there is an optimal amount of fertilizer that can be applied. Too much or too little negatively affects plant height.


6. Report

- State if hypothesis was <u>supported</u> or <u>rejected</u>.
- If hypothesis was rejected, or found to be only partially true, repeat the process!

 The hypothesis is supported – plants grown with fertilizer grow taller than plants grown without fertilizer.

