Acid-Base Basics

Solutions can be acidic, neutral, or basic as defined using the ASCALE.

The pH scale measures something acidic as a pH from 0 - 6.9 neutral is a pH of 7.0, and basic (or alkaline) has a pH of 7.1 - 14.

Acidic solutions were traditionally thought of as anything that was <u>SOUK</u> (e.g. lemons contain citric acid, vinegar is diluted acetic acid.)

Basic solutions were characterized by their <u>bitter</u> taste and <u>sliper</u> fee (e.g. soap).

Traditional/Arrhenius Theory

• The properties of acids were due to the presence of hydrogen ions, H⁺. Thus, acids were defined as compounds that $HCI_{(aq)} \to H^{+}_{(aq)} + CI^{-}_{(aq)}$ ions in aqueous solution.

$$H_2SO_{4 (aq)} \rightarrow 2 H^{+}_{(aq)} + SO_4^{2-}_{(aq)}$$

$$NaOH_{(s)} \rightarrow Na^{+}_{(aq)} + OH^{-}_{(aq)}$$

$$Mg(OH)_{2(s)} \rightarrow Mg^{2+}_{(aq)} + 2 OH^{-}_{(aq)}$$

This theor	y explained	a lot of acid-base chemistry but was limited because it only	described
<u>one</u>	type	of base – those containing the hydroxide ion.	

Brønsted-Lowry Theory

This theory applies to Arrhenius acids and bases, plus others – it is said to be the better explanation of acid-base chemistry.

Experimental evidence suggests that sometimes the H⁺ ion is not stable on its own, but rather reacts with a water molecule to form the hudin num = 100, $H_3O^+_{(aq)}$.

Thus, in this reaction, hydrogen chloride is a Brønsted-Lowry <u>QCICI</u> because it donates the proton that bonds with the water molecule. Water, in this reaction, is the Brønsted-Lowry base because it accepts the proton.

Example: According to Brønsted-Lowry, identify the acid and base in the following reaction:

$$NH_{3}(g) + H_{2}O(1) \implies NH_{4}^{+}(aq) + OH^{-}(aq)$$

$$H:N:H + B:O:H \implies H:N:H + O:H$$

$$H:O:H \implies OOO(1)$$

$$Amphiprotic Substances$$

$$NH_{4}^{+}(aq) + OH^{-}(aq)$$

$$H:N:H + B:O:H \implies H:N:H + O:H$$

$$OOO(1)$$

$$OOO(1)$$

$$OOO(1)$$

Notice how water acted as a base in one reaction, and an acid in the other. Substances that be classified as a Brønsted-Lowry acid or base, depending on the reaction, are called moniaconc

<u>Example</u>: The bisulfate ion, HSO4⁻, is amphiprotic. Identify if it is acting as the Brønsted-Lowry acid or base in each of the following reactions:

$$H^{+}$$
 $HSO_{4^{-}(aq)} + H_{3}O^{+}_{(aq)} \leftrightarrow H_{2}SO_{4(aq)} + H_{2}O_{(1)}$
 $DQSC$
 $QCid$
 H^{+}
 $HSO_{4^{-}(aq)} + OH^{-}_{(aq)} \leftrightarrow H_{2}O_{(1)} + SO_{4^{2^{-}}(aq)}$
 $QCid$
 $DQSC$

Conjugate Acid-Base Pairs

Since acid-base reactions are reversible, a proton transfer may occur in the forward reaction and also in the reverse reaction. Thus, there is a Brønsted-Lowry acid and base on <u>Cach</u> side of the equation.

When the acid and base are on the product side of the equation, they are referred to as the Conucate acid or conjugate base.

$$\begin{array}{c} H: N: H + H: O: H \\ H: N: H + H: O: H \\ H \end{array} \longrightarrow \begin{bmatrix} H \\ H: N: H \\ H \end{bmatrix}^{+} + : O: H^{-} \\ H \longrightarrow \begin{bmatrix} H \\ H: N: H \\ H \end{bmatrix} \longrightarrow \begin{bmatrix} H \\ H: N: H \\ H \end{bmatrix}$$
base acid conjugate conjugate base

The conjugate acid is the substance that forms when a <u>bose</u> accepts a proton.

The conjugate base is the substance that forms when an <u>QQQ</u> loses a proton.

This means that for any acid-base reaction, each acid has a Conjugate and each base has a Conjugate

These conjugate pairs only differ by a hydrogen ion. (a proton!)

Example: Identify the conjug	gate acid-base p	airs in the	reaction below:	:				
HN	$HNO_{2(aq)} + H_2O_{(I)} \rightleftharpoons NO_{2(aq)} + H_3O^+_{(aq)}$							
ac	id base	convigate	conjugate	HNO2, NO2				
	1	Pose	aua	HaD, H30+				
Example: Identify the conjugate bases for the following acids: with chooss,								
(a) HCO3- CO3-2	(b) H₂O <u> </u>	M-	(c) HC ₂ H ₃ O ₂ _	C2H3O2				
Example: Identify the conjugate acids for the following bases: charges !								
(a) NH ₃ NH ₄ +	(b) H ₂ O H	30+	(c) HCOO	10004				