Recognizing Forces

A force is a $\frac{push}{N}$ or $\frac{pull}{N}$. It is measured in Newtons (N) where:

Forces are classified as either:

1. Contact Forces – where one object exerts a force on another object when they touch each other.

Force of Friction: exists between objects and always resists the stiding motion or attempted stiding motion

Air resistance is a special type

Applied Force: a force due to one object coming into contact with another object, such that a push or pull results

Tension: pulling force exerted by objects such as strings and ropes

Normal Force: a support force that aids perpendicular to the surface between the objects in contact eg. person leans on wall wall pushes horizontally or person textbook on desk, desk pushes upward

2. <u>Non-contact</u> Forces – where the two objects don't need contact to exert a force on each other (also called achon at a dutance forces)

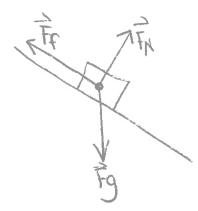
all objects expenence the downwoord force of growing which is equal to mass x acceleration due to gravity

Fig = $m\ddot{g}$ where $\ddot{g} = 9.8 \, \text{m/s}^2 [dawn]$ or Fig = -mg to indicate the force is in the regative y

Fon a level surface, Fx = - Fqx

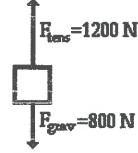
When solving force problems, it is necessary to visualize all the different forces acting on an object. To do this, we draw a \(\frac{\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2}

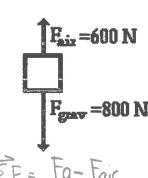
- > Objects are represented by a box
- Arrows represent the approximate direction and magnitude of each force


Examples:

- 1. A textbook sits motionless on a desk.
- 2. A car accelerates forwards from rest.

FF VFq


3. A block of wood slides down an incline.



Once we identify all the forces acting on an object, we can calculate the $\underline{\Sigma F}$, or the sum of all forces acting on an object.

SF = winners-losers

Examples:

Why is the net force important??? Newton's First Law of Motion states that:

an object at rest stays at rest and an object in motion stays in motion. Unless acted upon by a net force!

no charge or director

This means that:

- > A net force is NOT required for an object to maintain a constant velocity.
- > If a net force exists, _acceleration

change in speed director or both