Introduction to Vectors

All quantities can by divided into two categories – scalars and vectors.

A scalar quantity is a quantity that is described by its Magnitude speed 15 m/s ftwo parts: measurement + unit mass 22 kg Example: velocity 7.2 m/s [NE] three parts: measurement, unit force 190 N [up] Three parts: measurement, unit Example: + direction The direction of a vector is always expressed in square brackets using either:

(rectangular coordinate system) One of the four basic directions or relative Angle is measured counterclockwise to a north or south position so that the from due east (x-axis) angle is less than 90. 40° counter-clockwise 240° counter-clockwise rotation from East rotation from East 180 270' magnitude Representing Vectors direction, Use a Scale and arrow indicates the direction tail SCALE: 1 cm = 4 m Example #1 Example #3 Example #2 d = 20 mVector a and Vector b Vector a and Vector b Vector a and Vector b d=20m[N30'E] or

have same direction

20m 1007

but different magnitude.

have same magnitude

but different direction.

 $\overline{a} \neq \overline{b}$

have same direction

 $\overline{a} = \overline{b}$

and same magnitude.

CHAPTER 9 SKILL BUILDER

Finding Directions

BLM 9-13

Goal • Practise calculating both compass directions and RCS directions.

What to Do

Answer each question in the space provided. You will need a ruler and a protractor.

1. Use the diagrams in the table below to calculate both compass directions and RCS directions.

Diagram	40°	30°	30°	45°
Compass direction	[N 50'E]	[5 60:N]	[N 30.M]	[S 45. E]
RCS direction	[40]	[aio]	[[20]	[315]

2. (a) Convert the following RCS directions to the equivalent compass direction.

RCS direction	40° RCS	90° RCS	120° RCS	250° RCS	310° RCS
Compass direction	[N 50 E]	[N]	[N 30. M]	s ao° wJ	[S 40'E]

(b) Convert the following compass directions to the equivalent RCS direction.

Compass direction	S40°E	N20°W	W	N45°E	S20°W
RCS direction	[310]	[10]	[180]	[45]	[250]

Adding Vectors

1. Graphically: Head-to-Tail Method

- used for adding two or more vectors, regardless of direction
- draw a vector to scale
- where the head of the first vector ends, the tail of the second vector begins
- repeat,for all vectors
- draw a line from the tail of the first vector to the head of the last vector (from start to finish – this line is the resultant)
- measure length and direction of the resultant
- convert to real units using the given scale

Example:
$$\frac{30.0 \text{ m}}{20 \text{ m}} = \frac{35.0 \text{ m}}{25 \text{ m}} = \frac{35.0 \text{ m}}{300^{\circ}} = ?$$

• Note: The order in which vectors are added does _____NOT____ matter. The magnitude and the direction of the resultant is not changed.

2. Algebraically

- used to find sum of <u>COMMEAS</u> vectors (vectors on the same line)
- treat vectors as though quantities on a number line

25.0 N (E) + 20 N (W) = ?

$$\frac{\partial 5 N}{\partial t} + \frac{-\partial 0N}{\partial t} = \frac{5N}{2}$$

Ossign \$44 from Finding
Directions
plus \$1-6 on WIS
Host follows