I	he	Meaning of K_{eq} If $K_{eq} > 1$, the reaction or are favoured; meaning the reaction essentially "goes to completion" and all or most of the reactants
		If K _{eq} >1, the reaction or are favoured;
		meaning the reaction essentially "goes to completion" and all or most of the reactants are used up to form the products.
	•	If K_{eq} < 1, the <u>reaction</u> reaction or <u>reaction</u> favoured. The reaction does not occur to any great extent - most of the reactants remain unchanged, and there are few products produced.

Note: "Favoured" means that side of the equation has the higher number of moles and higher concentrations than the other.

Example: For the equilibrium system described by:

$$2 SO_{2(g)} + O_{2(g)} \rightleftharpoons 2 SO_{3(g)}$$

at a particular temperature the equilibrium concentrations of SO₂, O₂ and SO₃ were 0.75 M, 0.30 M, and 0.15 M, respectively. Calculate K_{eq} and determine which reaction is favoured.

$$Keg = \frac{[503]^2}{[50]^2[02]} \frac{[0.15]^2}{[0.75]^2[0.30]} = 0.13$$

since keg < 1, the reverse reaction is favoured

- equilibrium expression.
- Solids or liquids are not included because while their amounts change during the reaction, their concentrations do not. They are instead assigned a value of 1.

$$CaO_{(s)} + CO_{2(g)} \rightleftharpoons CaCO_{3(s)}$$

 $\text{Keg} = \frac{\text{[CaO3]}}{\text{[Coo]}} = \frac{1}{\text{[Coo]}}$

Example: For the equilibrium system described by: $PCl_5(s) + H_2O(g) \rightleftharpoons 2HCl(g) + POCl_3(g)$

At equilibrium at 100°C, a 2.0L flask contains:

0.075 mol of PCl₅

0.050 mol of H₂O

0.750 mol of HCl

0.500 mol of POCl₃

Calculate Keq for the reaction below and determine if the products or reactants are favoured.

Keg =
$$[HcI]^2[POCI_3] = [HcI]^2[POCI_3] = [0.375]^2[0.25] = [1.41]$$

[PC5][Ha] [D,025]

Calculate molarity first

[Hc] = 0.750mol = 0.375 M

Products are faracted

(short it)

* Be able to manipulate the equation and solve for any part of the equilibrium expression. *

Example: K_{eq} = 798 at 25°C for the reaction: $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$.

In a particular mixture at equilibrium, $[SO_2]=4.20$ M and $[SO_3]=11.0$ M. Calculate the equilibrium $[O_2]$ in this mixture at 25° C.

* If asked to find K_{eq} for the reverse reaction at the same temperature, simply take the reciprocal of K_{eq} for the forwards reaction. *

Example: For CO (g) + H_2O (g) \rightleftarrows CO₂ (g) + H_2 (g), K_{eq} = 280 at 600K. What is the value of the equilibrium constant for the reverse reaction at the same temperature?