Laws of Motion

Let's review... Newton's First Law of Motion states that:

an object in motion stays in motion; an object at rest stays at rest... unless acted upon by a net force!

This law is sometimes thought of as the Law of <u>hoecha</u>, where inertia is the ability to resist change (at a keep doing whats Hobing C)

Examples of inertia from driving:

Sudden Starts:

- head rests stop the head from being pushed back.
- the coffee tends to spill on you.

Sudden Stops:

- seat belts help your body resist the tendency to keep moving.
- the coffee tends to spill forward.

Turning:

getting pushed to the outside of the turn

All objects have inertia but objects with _____ masses have more!

Mass (kg) is measure of the amount of matter in an object. Do not confuse mass with weight!

- > Weight is the force of gravitational attraction.
- Mass is constant throughout the universe but weight changes depending on location.

3. Newton's Second Law of Motion:

- The acceleration of an object as produced by a net force is directly
 proportional to the magnitude of the net force, in the same direction as the
 net force, and inversely proportional to the mass of the object.
- In other words, the net force is equal to mass times the acceleration.

$$\sum \vec{F}_{net} = \mathbf{m} \cdot \mathbf{a}$$

To find F_{net} when two forces work together ...

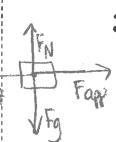
add them up

To find F_{net} when many forces act on an object:

Fret = Winners - Losers

2. Stan and Kyle are pushing a 75 kg sled along a frictionless icy surface. Stand pushes with 55 N and Kyle pushes with 25 N. Find the sled's acceleration.

AFN


Fagi

EFret= Fston+ Fryte= m-a

a= Fston+ Fryte

m

= 5<u>5</u>N+<u>25</u>N 75 Ka 3. A 1200kg car accelerates at 5.85 m/s². If the force of friction acting on the car is 2800 N, how much force does the engine exert?

Fam-Ff= ma

Fapp = F++m·a = 2800N+ 1200

9890N

4. A student pulls straight upwards with a force of 650 N on their 15 kg backpack. What is the backpack's acceleration?

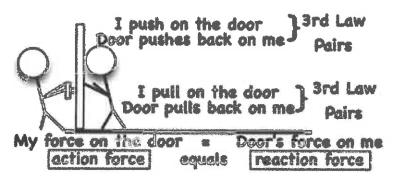
Fapp-Fg=ma

Stret-in'o

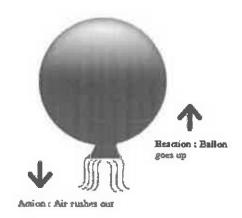
a= Fapp-Fo

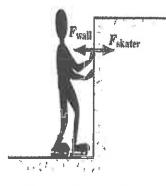
Fapp-ma

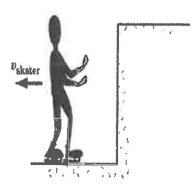
650N-15kg(9.8m)50


= 33.5
$$\frac{15 \text{ kg}}{5^{3}} = 34 \text{ m/s}^{3}$$

Newton's Third Law of Motion states that:


For every action force, there exists a simultaneous reaction force that is equal in wag involve but opposite in direction


This is also called the action - reaction principle.

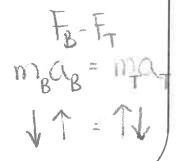

Examples action-reaction:

skater pushes on wall

skater recoils off wall

Imagine a bug hitting the windshield of a semi trailer.

What force pair occurs?


truck hits bug-bug hits truck

Which force is bigger?

NEITHER!

Which object has a greater acceleration?

The bug since Mbug << much

