Acceleration

Acceleration (a vector quantity) is the rate at which an object changes its <u>velocity</u>.

Anytime an object's velocity is changing, it is accelerating whether or not it is speeding up, slowing down, and/or changing directions.

Average Acceleration

The average acceleration (\overline{a}_{av}) of any object over a given interval of time (t) can be calculated using the equation

Ave. acceleration,
$$\overrightarrow{a_{av}} = \frac{\Delta velocity}{\Delta time} = \frac{\overrightarrow{v_f} - \overrightarrow{v_l}}{t_f - t_i}$$

Acceleration is expressed in units of velocity/time.

Typical acceleration units include:

- m/s/s
- mi/hr/s
- km/hr/s
- m/s^2

Ex: 1. The velocity of a train increases from 3.0 m/s at 2.0 s to 18 m/s at 6.8 s.

What is the train's average acceleration?

Ex: 2. A car slams on its brakes and reduces its velocity from 30.0 m/s to 0.0 m/s

in 4.0 s. What is the average acceleration?

Ex: 3. If a snowboarder is travelling at 8.0 m/s, how long will it take her to reach 36.0 m/s if she can accelerate at a rate of 3.5 m/s^2 ?

Given:
$$v_i = 8.0$$
 m/s [str]
$$v_f = 36$$
 m/s [str]
$$\hat{\alpha} = 3.5$$
m/s²[str]

$$\hat{Q} = \frac{\partial V}{\partial t} = \frac{\partial V}{$$

Direction of the Acceleration Vector

Since acceleration is a vector quantity, it has a direction associated with it. The direction of the acceleration vector depends on:

- 1. whether the object is speeding up or slowing down
- 2. whether the object is moving in the +ve or -ve direction
 - Remember that: North, south, east, west, right, left, up and down are all directions
 - o up or to the right are often positive
 - o down or to the left are negative.

The general principle for determining the acceleration is:

• If an object is <u>slowing down</u>, then its acceleration is in the <u>opposite</u> <u>direction</u> of its <u>motion</u>.

Example b		
Time (s)	Velocity (m/s)	
8	-8	
1	-6	
2	-4	
3	-2	
4	0	

Evample R

*			
Time	Velocity (m/s)		
(a)	(m/s)		
O	8		
î	6		
2	4		
. 3	2		
4	0		

Example C

Time (s)	Velocity (m/s)		
0	0		
1	-2		
2	-4		
3	-6		
4	-8		

Example D

These are both examples of positive acceleration.

These are both examples of negative acceleration.

	Velocity	Acceleration	
A car sitting at a stop light hits the gas	+	+	
From rest you back out of your driveway			
A plane lands and comes to a stop	+		
You drop a rock off a cliff		_	
You throw a rock straight up	+	_	

* Important to understand: Negative accelerations do \underline{not} refer to acceleration values that are less than 0. An acceleration of -2 m/s/s is an acceleration with a magnitude of 2 m/s/s that is directed in the $\underline{negative\ direction}$. *

18. De the

So V, io +

x= V4-Vi = OKm/h-50km/h 75 = -7.14 km/h/s