Turning a Car, Banked Curves and 2 D Problems

Let's review... As a car makes an unbanked (flat) turn, the to ce of from between the tires and the road provides the centripetal force required for circular motion.

Example: A 1.0 x 103 kg car rounds a curve on a flat road with a radius of 50.0 meters at a constant speed of 50.0 km/hr. Will the car follow the curve or ...?

a. On dry pavement with the coefficient of static friction of 0.60

Given:
$$m=1000 \, \text{kg}$$
 $F_C = mv^2$ $r = mv^2$ x masses cancely constructed: $r = mv^2$ x masses cancely $r = 50 \, \text{m}$ $r = 60 \, \text{m}$ r

$$r = \frac{mv^2}{\mu \cdot mg}$$
 * masses cancelor

 $= \frac{v^2}{\mu \cdot g} = \frac{(13.89 \text{ m/s})^2}{0.60.9.8 \text{ m/s}^2} = 33.81 \text{ m}$

= Soues

b. In icy conditions when the coefficient of static friction becomes 0.25

$$r=v^2$$
 $(13.9 \text{ m/s})^2 = 78.75 \text{ m} \text{ so it will not follow}$

Hereurve!

Here where I radius

11 will follow thecurve! radius

What happens if the force of friction is insufficient? The (ar will skid (see picture) ara go straight (Newton & First Law)

Is it possible to still make a turn if no friction exists? Yes, we can bank the curve

Banking the curve can keep the car from skidding because...

Consider a car traveling at a constant speed around a frictionless banked corner.

In the vertical, there is no acceleration so...

$$F_N \cos \theta = mg$$
 $F_N = mg$ $\cos \theta$

In the horizontal...

$$F_{C} = F_{N} \sin \theta$$

$$= (mg - \sin \theta) \sin \theta$$

$$= (mg - \sin \theta) \sin \theta$$
Since $F_{net} = F_{c}$

$$= mg - \cos \theta$$

$$= mg - \cos \theta$$

$$= mv^{2}$$

Solving for v gives:

Example: A curve has a radius of 50 meters and a banking angle of 15°. What is the ideal, or critical, speed (the speed for which no friction is required between the car's tires

and the surface) for a car on this curve?

Given:
$$r = 50m$$
 $\theta = 15$:

 $V = [rg + an \theta]$
 $0 = 15$:

 $v = [som \cdot 9.8m + an 15]$
 $v = [som \cdot 9.8m + an 15]$
 $v = [som \cdot 9.8m + an 15]$

Example: Calculate the angle at which a frictionless curve must be banked if a car round it safely at a speed of 22 m/s if its radius is 475 m.

Given:
$$V = \partial \partial m | S$$

 $V = 475m$
Thead: ∂
 $O = + \cos^{-1}(-1)$
For $\int_{Fc}^{FV} d^{-1} d^{-1}$

$$\theta = tan'' (\frac{32m}{rg})$$
= $tan'' (\frac{32m}{s})^2$
= $5.94' = 6'$