Acid-Base Titration

Titration is a process where a known property of one solution is used to infer an unknown property of another solution.

In an acid-base titration, the sample in the receiving flask may be an acid or a base. If the sample is a base, the titrant is an _____ (or vice versa).

The goal of the acid-base titration is to add enough acid to neutralize the base (or vice versa).

Titration Setup

Titrant
Known concentration

Analyse / Titrand
Known volume,

Unknown concentration

Conicel Flash

Strong Acid + Strong Base → Water + Salt

- This is a special type of double displacement reaction known as a **neutralization** reaction.
- After the reaction, the salt solution is neutral, meaning it contains <u>equal</u> moles of H⁺ and OH⁻ ions.

Example:

HCI (aq) + NaOH(aq) > HaO(1) + Nacl (aq)

Equivalence Point

The equivalence point occurs when the number of moles of base is neutralized by equal number of moles of acid.

moles of H⁺ = # moles of OH⁻

By knowing the volumes of acid and base used, and the concentration of the titrant used, we can determine the concentration of the unknown solution.

Since: M=mol mol = M·L moles H+ = moles OH
Maya = MBVB

MAVA = MBVB

100.0 mL of NaOH solu NaOH?	ution with an un $HCl_{(QQ)}$ + N				concentration of the
Given: VA = 758mL	(4)	· · · · · ·	need: MB	- 1	
MA = 0.100M VB = 100.0mL		MBVB		77.0.1	
-	MB.	= MAVA =	. O.100M-1	.Oml	= 0.0758M
			,,,,		
notice	the 1:1 mole	ratio			

Example 1: During a titration, 75.8 mL of 0.100 M HCl_(aq) is titrated to equivalence point with

Example 2: A 20.0 mL solution of strontium hydroxide, $Sr(OH)_2$, is titrated with 25.0 mL of 0.0500M HCl_(aq). What is concentration of the base?

<u>Example 3</u>: If it takes 50.0 mL of 0.50 M potassium hydroxide solution to completely neutralize 125 mL of sulfuric acid solution, what is the concentration of the acid?