Types of Chemical Bonds

1. Covalent

- <u>sharing</u> of valence electrons to create a stable octet
 - hydrogen forms stable configurations when it shares two electrons (called the duet rule)

- atoms with similar ionization energies usually form covalent bonds (usually nonmetals)
- the shared electrons are considered to belong to both atoms at the same time and holds the atoms together to form a molecule
- pairs of electrons that do not participate in chemical bonds are called <u>lone electron pairs</u>
- more than 1 valence pair may be shared between 2 atoms
 - = 2 valence pairs shared = double bond e.g. O₂ 12 C
 - 3 valence pair shared = triple bond e.g. N_{2 10}e

2. Ionic

- transfer of valence electron(s) from a metal to a nonmetal to form an ionic compound
- metals want to lose valence e⁻ to form cations

• nonmetals want to gain valence e⁻ to form anions

$$Cl + 1e- --- > [Cl^{-}] + energy$$

For example:

Na = lose 1 e⁻ to have 10 e⁻ e⁻ configuration similar to Ne 1s²2s²2p⁶

Cl = gain 1 e⁻ to have 18 e⁻ e⁻ configuration similar to Ar $1s^22s^22p^63s^23p^6$

* Note: Compounds can contain both ionic and covalent bonds if they contain a <u>polyatomic</u> ion.

For example: Ca(OH)₂ The bond between oxygen and hydrogen in the OH⁻ ion is covalent while the bond between Ca⁺ and OH⁻ is ionic.

3. Metallic

• metal atoms share a

"sea of electrons"

• electrons can "float"

vie to be treely between atoms; allows metals to conduct electricity well

Positive ions from the metal

Predicting Bond Type

Bonding is not usually purely ionic or covalent, but somewhere in between. The difference in electronegativity (ΔE) of the atoms in a bond can help us identify the bond type.

Electronegativity is an atom's ability to attract the shared paired electrons to itself in a covalent bond (a measure of the <u>affinity for electrons</u> by element).

1 H																·	_~
2.1		Decreas 5 6 7 8 9															sing . i
3	4													7 N	8	9 F	
1.0	Be 1.5				8 2.0	C 2.5	3.0	3.5	4.0	Y							
	12	Increasing											14	15	16	17	
11 Na	Mg												Si	P	S	Ci	
0.9	1.2												1.8	2.1	2.5	3.0	
19	20	21	22	23	24	25	26	27	28 Ni	29	30	31	32	33	34	35 Br	
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co		Cu	Zn	Ga	Ge	As	Se		
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.9	1.9	1.9	1.6	1.6	1.8	2.0	24	2.8	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	
Rb	Sr	Y	Zr	Nb	Mo	To	Ru	Rh	Pd	Ag	Cd	lin.	S n	Sb	Te		
8,0	1:0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	
Cs	Ba	La	HI	Ta	W	Re	Os	ŀť	Pt	Au	Hg	TI	Pb	Bi	Po	At	
0.7	0.9	1,1	1.3	1,5	1.7	1.9	2.2	2.2	2.2	2.4	1,9	1.8	1.9	1.9	2.0	2.2	
87	88	89				-						Élec	tronegi	divides -	of the E	ements	
Fr	Ra	Ac															
0.7	0.9	1.1															

- Metals have low electronegativity values.
- Nonmetals have high electronegativity values.
- Down a group, electronegativity decreases
- Across a row, electronegativity increases

1. Pure (Nonpolar) Covalent Bonding ($\Delta E < 0.4$)

• equal or near equal sharing of electrons between atoms

For example:

2. Polar Covalent Bonding ($\Delta E = 0.5 - 1.7$)

- unequal sharing of electrons between atoms, meaning the electron pair spends more time near one atom than the other
- results in a partial charge on each atom

For example:

HCl

- indicates CI has greater affinity for electrons
 - o the shared electron pair spend more time here than near H
 - this separation of positive and negative charges is called a dipole
 - to show the partial charge, an arrow pointing in the direction of the slightly negative atom is used

Other Examples:

DE=2,5-2,1 =0.4 (£0.4%, no dipole)

CH₄

3. Ionic Bonding ($\Delta E > 1.7$)

electron(s) transferred