ICE Charts

A useful tool in solving equilibrium problems is	
• "I" stands for the	concentrations.
"C" represents the	in the concentrations as the system moves
towards equilibrium.	\
• "E" represents the <u>PAULINDAUM</u>	concentrations.
To Create an ICE Chart	
Place initial concentrations of each mole	ecule on the first row making sure they are
expressed in Moles I Iter.	scule on the mist row, making sure they are
2. In the second row write the change in co	oncentrations according to the balanced
equation:	
let "x" stand for the change in cor	ncentrations
• give the reactants a <u>\(\cappa_{CO}\) \(\cappa_{CO}\)</u>	
sign to sl	now the decrease or increase in concentration,
respectively	
	dicate if more than one molecule is involved
3. In the last row add the initial concentrations plus the change in concentrations.	
Towns also 0.20 males of N.Oas initially also	and into a 2.0 souled flesh and allowed to mach
	ced into a 2.0 sealed flask and allowed to reach tequilibrium, the amount of N ₂ O ₄ was measured
as 0.018 moles. Calculate the equilibrium conc	
A) C = AVC	,
1/204(g)	4) That & given Ligary o. o locky
I 0.10 O	(4) And x given [N204]=0.018ceq [N204]=0.018mol=0.009 M
C - x + 2x	201
6 0.10-x + 2x	0.10
	0.10-x = 0.009
(1) Calculate Mobility	-x = -0.091
MO1,0 = 10,00 = 0,10 M	X = 0,091M
3.00	
assume [NG]-D	5) sub x into No expression
a to the almon in com as	[M81,0 = 110.0×6=x6=[601]
(a) write the charge in conc ns	[wo]] ax a and
noting reactants get "used up"	
o rake products	(6 solve for led
3 add I+C	(6 Solve for 1803) = [0.18] = 3.6
O day.	TALLY TOM97

Example: A mixture of 0.100 moles NO, 0.050 moles H₂ and 0.100 moles H₂O was placed into a 1.0 L closed container and allowed to reach equilibrium according to:

$$2 NO_{(g)} + 2 H_{2(g)} \rightleftharpoons N_{2(g)} + 2 H_2O_{(g)}$$

There was no N₂ present initially. At equilibrium, the amount of NO was found to be 0.062

moles. Calculate Keg. | 2 NO(g) + 2H₂(g) = N₂(g) + 2H₂(g) I 0.10 0.050 0 0.10 OC - 2x - 2x + x + 2x (3) C | 0.1-2x 0.05-2x x | 0.10+2x

(Sulate Melany [NO: 0.10mol=0.10 M

> [HJ=0.050 M [N+J=0 [H=0]=0.10M

(4) [NO]=0,062md: 0,062M

0.1 - 2x = 0.062-dx =-0.038 x =0,019 M (5)[NO]=0.062M [Ha]=0.05-2(0.019) = 0.012 M[NJ=x=0.019 M [HO]=0,10+2x =0.10+2(0.019)

= 0,138M