5.0 Alcohols, Ethers, and Thiols

Functional Groups & Hydrocarbon Derivatives

A functional group is a reactive portion of a molecule (eg. -OH).

Functional groups are used to identify compounds but also to explain properties like solubility, melting and boiling points.

Hydrocarbon derivatives are organic compounds

group (-OH) attached to a carbon chain.

A phenol contains a hydroxyl group (-OH) attached to a benzene ring.

A primary alcohol has the hydroxyl group bonded to a terminal carbon atom.

alcohol water

phenol

A secondary alcohol has the hydroxyl group bonded to a carbon atom with two alkyl groups.

A tertiary alcohol has the hydroxyl group bonded to a carbon atom with three alkyl groups.

Naming Alcohols

- Use the suffix –ol
- Number the parent chain so that the hydroxyl group has the lowest number possible
- If necessary, include a number before the -ol suffix to indicate which carbon the hydroxyl group is attached to.

Example: Name the following and state whether it is primary, secondary or tertiary.

Alcohols containing more than one hydroxyl group are referred to as polyalcohols.

• Use the suffix -diol or -triol instead of -ol.

ethane-1.2-diol (commonly called ethylene glycol) used as antifreeze

propane-1,2,3-triol (commonly called glycerol) used in the pharmaceutical industry

Example: Name the following.

HOCH2CH2OH ladiethanol

If the hydroxyl group is attached to a cyclic hydrocarbon, remember to number the ring so the hydroxyl group has the lowest number possible, and use the prefix cyclo-.

2-methlycyclopentanol

The hydroxyl group can also be attached to an aromatic hydrocarbon, what we now call a phenol.

If the benzene ring has multiple hydroxyl groups benzene is used as the root word.

2-methylbenzene-1,3-diol

Ethers

contain an <u>oxygen</u> atom between two carbon atoms in a chain

• named by writing the name of the shorter alkyl group, then the suffix OXY then the name of the longer alkyl group as if it were an alkane

Ethers as Anesthetics

Anesthetics

- · inhibit pain signals to the brain.
- like diethyl ether CH₃—CH₂—O—CH₂—CH₃ were used for over a century, but caused nausea and were flammable.
- developed by the 1960's were nonflammable.

Ethane(enflurane)

Example: Draw the following. (a) ethoxyethane

(b) ethoxypropane

Thiols

- contain the <u>sulfhydryl</u> (-SH) functional group
- generally have strong odours (i.e. thiols give garlic, skunks, and sewage their distinctive smells)
- named by adding <u>thiol</u> to the alkane name of the longest carbon chain

CH₃CH₂CH₂CH₂SH

butanethiol

CH₂=CH-CH₂-SH 2-Propene-1-thiol

CH₃—CN₂—CH₃—SH 1-Propanethiol Onions

Timberlete, General, Organic and Stotopical Chamietry: Codyright © Passion Education Inc., publishing as Bentamin Cummuna