Will a Precipitate Actually Occur? Using TIPs

	We can predict the products of a double displacement reaction to determine if a precipitate is to form. However, this precipitate will only be created if there are enough in solution to establish equilibrium.
	As such, we need to do the math to determine if we have enough ions! Called the TRIAL ION PRODUCT (TIP), this math is basically a Keq KSp
	The end result of TIP is symbolized using a $\overline{\mathbb{Q}}$, which stands for the product of the ion concentrations which actually exist in solution.
	Long story short: calculate the TIP using the values given in the problem (assuming they are equilibrium values) and then compare TIP to K_{sp} .
	If: Q < Ksp Not enough ions to form a precipitate Q = Ksp Adequate ions to form a saturated solution but not enough for a precipitate Q > Ksp Excess of ions and a <u>Precipitate</u> will form
	 Steps: 1. Balanced Double Displacement Reaction Net Ionic Equation for the Precipitate Find Concentration of Ions Concentration x Volume Fotal Volume Substitute Concentrations into "Q" Compare Q to Ksp
	Example: If the K_{sp} for PbCl ₂ is 1.8×10^{-4} , will a precipitate form when 200.0 mL of 0.015 M NaCl is mixed with 100.0 mL of 0.060 M Pb(NO ₃) ₂ ?
)	NaCl is mixed with 100.0 mL of 0.060 M Pb(NO ₃) ₂ ? $2 \text{NaCl}(aq) + Pb(NO3)a(aq) \xrightarrow{-1} 2 \text{NaNO}_{3}(aq) + PbCl_{a(s)}$
)	Pb+2(0q) + 2(1(0q) - Pb(12(s)
	[Pbt2]= 0.060 M. (100mL)= 0.00 M [Pbt2]
	[CIT] = 0.015 M x /200mL) = 0.01 M [CI]
	[CIT] = 0.015 M × (200mL) = 0.01 M [CIT] Q = [Pb+2][CIT]2 (300mL) (5) Ksp = 1.8 x10 4 winte Q = 2.0 x10 6 Q = [Db+2][CIT]2 (Q< ksp = 1.0 precipitate will form)
	= [0,00][0,0]2

Example: Will a precipitate form if 25.0 mL of 1.4×10^{-9} mol L⁻¹ sodium iodide and 35.0 mL of 7.9×10^{-7} mol L⁻¹ silver nitrate are mixed? The K_{sp} for AgI at 25°C is 8.5×10^{-17} .

Na I (ag) + Ag NO 3 (ag) - Ag I (s) + Na NO 3 (ag)

Ag (ag) + I (ag) - Ag I (s)

[Ag] =
$$7.9 \times 10^{-7} \text{ M} \times (\frac{35 \text{ mL}}{60 \text{ mL}}) = 4.61 \times 10^{-7} \text{ M} [Ag]$$

[IT] = $1.4 \times 10^{-9} \text{ M} \times (\frac{35 \text{ mL}}{60 \text{ mL}}) = 5.83 \times 10^{-10} \text{ M} [IT]$
 $Q = [Ag] [IT]$
 $= [4.61 \times 10^{-7}] [5.83 \times 10^{-10}]$
 $Q > \text{Ksp} = 8.5 \times 10^{-17}$
 $= 2.7 \times 10^{-16}$

<u>Example:</u> A student prepares a solution containing 0.010M calcium nitrate and 0.025 M sodium phosphate. Will a precipitate form when the student makes this solution? If so, identify the precipitate.

3
$$Ca(NO_3)acq_3$$
 $tal_3Na_3PO_4cq_3$ $= 6 NaNO_3caq_3 + Ca_3PO_4a_{15}$)

3 $Ca^{\dagger a}(aq_3) + 2PO_4^{3}(aq_3) = (Ca_3(PO_4)_a(s_3))$
 $[Ca^{\dagger a}] = 0.01 \text{ M from } (a(NO_3)_a 1:1: [Ca^{\dagger a}] = 0.01 \text{ M}$
 $[PO_4^{3}] = 0.025 \text{ M from } No_3PO_4 1:1: [PO_4^{3}] = 0.025 \text{ M}$
 $Q = [Ca^{\dagger a}]^3 [PO_4^{3}]^3$
 $Ksp = ? Look up! p. 705 in text$
 $= [0.01]^3 [0.025]^2$
 $A = [0.01]^3 [0.025]^2$
 $A = [0.25 \times 10^{-10}]$
 $A = [0.25 \times 10^{-10}]$
 $A = [0.25 \times 10^{-10}]$