Common Ions and Separating Ions

The Effect of Common Ions on Solubility

An example of Le Chatelier's Principle, the common ion effect states that equilibrium in solution can be _______ by dissolving any compound that contains ions already present, or any compound that reacts with one of the ions present in solution.

Example:

BaSO_{4 (s)}
$$\implies$$
 Ba²⁺(aq) + SO₄²⁻(aq)

Let's add BaCl_{2 (s)} to this solution: BaCl_{a(s)} \Rightarrow Ba⁺²_(qq) + acl_(qq) So in reality we are adding: Ba⁺² as Cl is simply a spectator

This shifts equilibrium left (due to 1 Bat2cog) resulting in more solids

* meaning common ions reduce solubility *

<u>Example:</u> Would you expect solid silver chloride to be more soluble in water or in a solution of sodium chloride?

adding Nacleary Company Company Company and Company adds CT thereby shifting equilibrium Against Again

<u>Example:</u> In last unit's lab we added NaOH (aq) to a solution of potassium chromate. Neither sodium nor hydroxide are common ions yet we observed equilibrium shifting. Explain.

Croy (ag) + 2H⁺(ag) = Cra07²(ag) + HaO(1)

chromate
yellow

orange

udding NaOH(09) = Na'(09) + OH (09) adds OH' which combines with H+(09) to make more HaO(e) thereby V H+ and shifting egm left

Separating Ions Out of Solution via Selective Precipitation

Consider a solution containing both Ag⁺ and Cu²⁺. If HCl_(aq) is added to the solution:

HCl(aq) = H(aq) + Cl(aq) Ht is a spectation but Cl-will bord

$$Ag(aq) + Cl(aq) + Cl(aq) + Cl(aq) + Cl(aq) + Cl(aq) + Cl(aq)$$

Again table now only Cuta left in soln

Separation of ions in an aqueous solution by using a reagent that forms a precipitate with one

or a few of the ions is called __Selective <u>ufcipitation</u>.

Example: A solution contains Ag⁺, Cu⁺², and Mg⁺² ions mixed together. What reagents can be added to separate the ions?

- 1. Determine which cation is most insoluble.
 - Ag⁺ is insoluble with CH₃COO, halides (CI, M, I) SO₄⁻², S⁻², OH
 Cu⁺² is insoluble with S⁻², OH Croy a
 Mg⁺² is insoluble with OH Croy a
- 2. Find a reagent cation to bond with the anions.
 - Recall that a reagent must have a cation and an anion. Since alkali cations are soluble, they will act as spectator ions (example: sodium, Na⁺).
- Select the order.

• First add NaCl to remove
$$Ag^+$$
.

 $NaCl_{(aq)} \rightarrow Na_{(aq)}^+ + Cl_{(aq)}^ Nacl_{(aq)} \rightarrow Na_{(aq)}^+ + Cl_{(aq)}^-$

<u>Example:</u> Describe how to separate the following positive ions present in a solution with nitrate ions.