Conservation of Energy

When only conservative forces (like gravity) work on an object...

total mechanical energy is conserved (Ep=Ex, Ez=Ep) ET = Eq+ EK

For situations where only conservative forces are involved:

ET: = ETF Eg: - Ex: - Eg = + Ex = mg sy = - 3 my = 2

Example: While jumping over The Great Wall of China an 82 kg skateboarder is needs to leave the ramp traveling at 78 km/h.

a. How much potential energy does he need to start with?

Given: m-Bayg Vs=787cm(=3.6)=21.67m Ex=0 h Egg-Olahinay)

Eq. + Ex = Eq. + Exe Eg: = Exc

b. What minimum height of ramp should he use?

Eg= mgAy

Gy = Eg : 198473 = [34 m]

- 1 (82 kg) (21.67m) 2 = 19247=1900]

Example: A trampoline dunk artist is bounces to a maximum vertical height of 4.8 m before launching himself towards the hoop. At the top of his arc he is 3.2 m above the ground. How fast is he traveling at this point?

USSUME STOAS at 1954

ET = bTc Eg;+ Ex; = Egr+ Exp 3,2m 39 by; + 1/2 = 29 by; + 4 2 152 = 20 (241-24) 4 - (3(98)(45-30) = 5,6m/s

When nonconservative forces (like friction, air resistance) are at work, then the total mechanical energy is changed.	
If the work is positive work, then the object will energy.	
If the work is negative work, then the object will energy.	
Example:	
a. Rusty Nales pounds a nail into a block of wood. The hammer head is moving horizontally when it applies force to the nail.	4
of the Noil	P.DU.
b. The frictional force between highway and tires pushes backwards on the tires of a skidding car.	1
F Ld Facher rauss to V Ex	-
- Bd Factor causes car to V Ex	
c. A weightlifter applies a force to lift a barbell above his head at constant speed.	Yours S
c. A weightlifter applies a force to lift a barbell above his head at constant speed.	
Force set of the work	
applied the course painced to	